
Node and Typescript
React Native on Android
Joplin Development
Knex
NPM and Gitlab
Publishing Type Definitions
AMQPLib and RabbitMQ
Debugging Complex TS Projects in VSCode
Handling File Uploads in Express
Logging and Winston
Fetch
npmrc
Node Version Management

React Native on Android
Installing Dev Environment
On ubuntu you can install the android SDK with apt-get install android-sdk .

You'll need a target device to test your app against. You can plug it in and use adb to do the hard
work. Make sure to install the Expo App on your target device - this will serve as a host on the
device that allows it to run your new app in development and do hot-reloading of your code.

Creating a Project
Using npx create a new project with the tooling provided by React Native like so:

Running the Project
Start the app with npm run android you might get error messages about not knowing where android
home is. On ubuntu android home installed from deb packages is normally at /usr/lib/android-sdk

(source) so just run:

export ANDROID_HOME=/usr/lib/android-sdk before you try to launch the app.

Theming
I'm looking at using Native Base as a component library in my apps.

Persisting Data

npx create-expo-app AwesomeProject
cd AwesomeProject
npm start # you can also use: npx expo start

https://play.google.com/store/apps/details?id=host.exp.exponent&gl=US
https://reactnative.dev/docs/environment-setup
https://stackoverflow.com/questions/47630630/android-sdk-ubuntu-default-path
https://docs.nativebase.io/install-expo

React Native is pretty modular so you need to use libraries to do most things. Use a storage library
to store data. This MMKV storage library appears to be pretty efficient and allows you to store state
across multiple databases very easily and quickly

Navigation
Using react-navigation to manage navigation within the app and show different views. The hello
world tutorial shows how this works

Using the Camera
The expo-camera library seems to be a nice way to do cross-device camera stuff. I got it working
very quickly.

Working Minimal Example Camera App

import { StatusBar } from 'expo-status-bar';
import { Camera, CameraType } from 'expo-camera';
import { useState } from 'react';
import { Button, StyleSheet, Text, TouchableOpacity, View } from 'react-native';

export default function App() {
 const [type, setType] = useState(CameraType.back);
 const [permission, requestPermission] = Camera.useCameraPermissions();

 if (!permission) {
 return (<View><Text>No camera m8</Text></View>)
 }

 if (!permission.granted) {
 return(<View>
 <Text>Clicky to grant perms m8</Text>
 <Button title='Grant Perms' onPress={requestPermission}/>
 </View>)
 }

 function toggleCameraType() {

https://reactnative.directory/?search=storage
https://github.com/ammarahm-ed/react-native-mmkv-storage
https://reactnavigation.org
https://reactnavigation.org/docs/hello-react-navigation
https://reactnavigation.org/docs/hello-react-navigation
https://docs.expo.dev/versions/latest/sdk/camera/

 setType(current => (current === CameraType.back ? CameraType.front : CameraType.back));
 }

 return (
 <View style={styles.container}>
 <Camera style={styles.camera} type={type}>
 <View style={styles.buttonContainer}>
 <TouchableOpacity style={styles.button} onPress={toggleCameraType}>
 <Text style={styles.text}>Flip Camera</Text>
 </TouchableOpacity>
 </View>
 </Camera>
 </View>
);
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 },
 camera:{
 flex: 1,
 },
 button: {
 flex: 1,
 alignSelf: 'flex-end',
 alignItems: 'center',
 },
 buttonContainer: {
 flex: 1,
 flexDirection: 'row',
 backgroundColor: 'transparent',
 margin: 64,
 },
 text:{

 }
});

###

Joplin Development
Joplin features a rich plugin architecture which allows third party developers to build plugins to
enable non-standard behaviours.

Joplin is written in Javascript/Typescript and built on top of electron. Plugins must therefore run in
an electron runtime.

Finding Global Settings Values
There are some use cases that might require you to know what settings the user has entered for
areas of the application outside of your plugin (for example you might need to know if the user has
sync enabled so that you can avoid destructive operations while synchronisation is happening).

The solution is to use the joplin.settings.globalValue api function. The global settings keys are not
documented and could change. The dev team suggest that developers look for useful values in
Settings.ts in the main project repo.

Publishing Plugins
The official Joplin plugin marketplace/selector retrieves items from this github repo which in turns
checks npm for packages that are published with the keyword joplin-plugin . So all you need to do is
ensure that your project follows the standard structure of a joplin plugin (e.g. comes with a
manifest.json, has the corresponding npm steps) and has this keyword.

The yeoman template provided by the joplin team comes pre-configured ready for publication of
plugins.

https://wiki.jamesravey.me/books/pkm/page/personal-knowledge-management#bkmrk-joplin
https://joplinapp.org/api/references/plugin_api/classes/joplinsettings.html#globalvalue
https://github.com/laurent22/joplin/blob/dev/packages/lib/models/Setting.ts#L142
https://github.com/laurent22/joplin/blob/dev/packages/lib/models/Setting.ts#L142
https://github.com/joplin/plugins
https://yeoman.io/

Knex
ORM for node.js with Typescript compatibility

NPM and Gitlab
Gitlab has a built in package repository that can be used as a stand in for NPM's global repo.

Best practice is to map a scope to your repository in your .npmrc file and in your package's
package.json file.

Gitlab uses CI tokens to authenticate against the npm repository.

https://docs.npmjs.com/cli/v6/using-npm/scope

Publishing Type Definitions
It can be useful to be able to publish these types in custom NPM repos e.g. Gitlab

Configuring package.json File
Including src and dist folders
use files key in package.json to indicate which directories should be published (
https://stackoverflow.com/questions/67523877/index-d-ts-file-not-published-to-npm). By default
you likely want to publish both the source code in src and the compiled/transpiled typescript->js
files in dist

e.g.

Including types and main

You also need to include a types property which tells npm
where your defined types (index.d.ts) sits - this is likely to
be in dist/index.d.ts if you follow the conventions in this
document.

Main module
In a node module you'd probably use src/index.js but we want to use dist/index.js - this will be the
compiled version of our typescript module.

{
 "files": [
 "dist",
 "src"
],
}

https://wiki.jamesravey.me/books/node-and-typescript/page/npm-and-gitlab
https://stackoverflow.com/questions/67523877/index-d-ts-file-not-published-to-npm

Configuring tsconfig.json
You probably want something like this:

Use dist for our outdir so that the output from transpilation goes to the right place. Use declaration:
true to have tsc produce an index.d.ts declaration file and plonk it into the dist folder so that it is
picked up by the package.json we configured above.

{
 "compilerOptions": {
 "sourceMap": true,
 "outDir": "dist",
 "strict": true,
 "lib": [
 "esnext"
],
 "allowJs": true,
 "declaration": true,
 "esModuleInterop": true
 },

 "include": ["src/**/*"],
}

AMQPLib and RabbitMQ
Channel closed by server: 406 (PRECONDITION-FAILED)
with message "PRECONDITION_FAILED
As explained by this article this implies that your channel has consumed a message without ACKing
or NACKing it and it has timed out. Make sure to ACK or NACK all messages when you receive them
- typically after processing just in case something goes wrong there.

this.channel?.consume(q?.queue, (msg: amqplib.ConsumeMessage | null) => {

 if(!msg){
 throw new Error(`Received a null message - weirdness.`)
 }

 try{

 const result = callback(msg)

 this.channel?.ack(msg)

 return result

 }catch(err) {
 console.log(err)
 this.channel?.nack(msg)
 }
})

https://www.grzegorowski.com/rabbitmq-406-channel-closed-precondition-failed

Debugging Complex TS
Projects in VSCode
launch.json Config File
This page assumes a build config based on the one in Publishing Type Definitions with a src and a
dist folder.

We can use npm link to link project1 to project2 and then we can add the dist folders from both
projects to outFiles so that they are picked up by the vscode debugger.

We also want to make sure that sourceMaps is set to true so that the debugger picks up the source
maps in the dist folders and maps them onto the corresponding src folders.

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "type": "node",
 "request": "launch",
 "name": "Launch Program",
 "program": "${workspaceFolder}/project1/dist/index.js",
 "preLaunchTask": "Build All",
 "outFiles": [
 "${workspaceFolder}/project1/dist/**/*.js",
 "${workspaceFolder}/project2/dist/**/*.js"
],
 "sourceMaps": true,
 "sourceMapRenames": true
 }
]
}

https://wiki.jamesravey.me/books/node-and-typescript/page/publishing-type-definitions

The launch definition can fire off a pre-launch task so we can use that to always ensure that the
transpiled js code is up to date before we launch it. The below configuration defines the builds and
dependencies between them

tasks.json Configuration
This file contains build tasks that the launch.json file can depend on before launching.

{
	"version": "2.0.0",
	"tasks": [
		{
			"type": "typescript",
			"tsconfig": "projecta/tsconfig.json",
			"problemMatcher": [
				"$tsc"
],
			"group": "build",
			"label": "tsc: build - projecta/tsconfig.json",
			"dependsOn":["tsc: build - projectb/tsconfig.json"]
		},
		{
			"type": "typescript",
			"tsconfig": "projectb/tsconfig.json",
			"problemMatcher": [
				"$tsc"
],
			"group": "build",
			"label": "tsc: build - projectb/tsconfig.json"
		},
		{
			"label":"Build All",
			"dependsOn":[
				"tsc: build - projecta/tsconfig.json",
				"tsc: build - projectb/tsconfig.json"
]
		}
]
}

We can define two typescript build operations - linking them together with dependencies and we
can also define a Build All job which is just a dummy job that doesn't do anything but requires the
ts builds to complete before it can be considered complete itself.

Handling File Uploads in
Express
Express and Multi-Part Uploads
Historically I've used the express Multer middleware and associated typescript types (@types/multer
).

Multer accepts files encoded as part of a multipart/form-data request. The file is added to the req
object as req.file : Express.Multer.File

This is done by adding a middleware to the route that accepts files like so:

Storing Uploaded Files in S3
It is possible to use minio to immediately pass the file through to an S3 layer via the buffer object.
Using a Minio client object:

import multer from 'multer'

...

const uploadMiddleware = multer({limits:{
 fileSize: config.uploads.maxSize
}})

router.post('/blah',
 uploadMiddleware.single('file'),
 controllerFunction);

https://expressjs.com/en/resources/middleware/multer.html

Dealing with CSVs
Use neat-csv for a promisy experience

async function handleFileUpload(req: Express.Request, res: Express.Response) {

 const fileObj : Express.Multer.File = req.file
 let file = await Minio.putObject(config.minio.bucket, objName, fileObj.buffer);

 return {"status":"uploaded", file}

}

https://github.com/sindresorhus/neat-csv

Logging and Winston
Winston is a fancy logging library for node.

Using Common Loggers Between
Packages
As per this stackoverflow post (mirror):

Declare and export your winston logger object and from different locations within your app.

https://stackoverflow.com/questions/49271570/winston-attempt-to-write-logs-with-no-transports
https://archive.jamesravey.me/archive/1667998491.438072/index.html

Fetch
The Fetch API was adopted as a standard replacement for XMLHTTPRequest in the last few years. It
is usually available by default in browser code. However it is not offered out-of-the-box by Node.js

Cross-Fetch
The cross-fetch library provides cross-platform fetch API compatibility for node-like environments.

It can be installed with npm i --save cross-fetch .

It can be used as an ES6 module via

import fetch from 'cross-fetch';

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch
https://www.npmjs.com/package/cross-fetch

npmrc
npmrc files registry namespaces and credentials that allow users to authenticate against private
(and public) npm registries.

NPM looks for a .npmrc file in the current directory and prioritises this over the one in your user
$HOME directory.

Node Version Management
Volta is a modern NodeJS runtime and tooling manager similar to NVM. An advantage of Volta over
nvm is that it can store metadata about the running version of node in a package.json file an install
the correct version of node.

Install specific tools and runtimes with volta install node@<version> npm@<version>

Example Package.json Content
When you run volta pin node@18.19.0 you might find that something similar to the below is injected
into your package.json file:

 "volta": {
 "node": "18.19.0"
 }

https://volta.sh/
https://github.com/nvm-sh/nvm

