
Batch Iterating in Pandas
Times and Dates in Python
Python and Gitea
CLI Development
FastAPI

FastAPI Logging

SQLAlchemy and MySQL
Django

Deploying Django Apps
Django and PostgreSQL

Python Packaging

Python

python - How to iterate over consecutive chunks of Pandas dataframe efficiently - Stack
Overflow

Batch Iterating in Pandas

BATCH_SIZE=32

for k,grp in df.groupby(np.arange(len(df))//BATCH_SIZE):

 # grp is a tiny dataframe BATCH_SIZE rows long

 print(k,grp)

References

https://stackoverflow.com/questions/25699439/how-to-iterate-over-consecutive-chunks-of-pandas-dataframe-efficiently
https://stackoverflow.com/questions/25699439/how-to-iterate-over-consecutive-chunks-of-pandas-dataframe-efficiently

The built in datetime library in Python can be a bit rubbish/difficult to use.

Pendulum provides an API kind of similar to moment.js although the parsing of text dates
is not quite as flexible/powerful.

Times and Dates in Python

https://pendulum.eustace.io

Tips and tricks for Python and Gitea and CI stuff.

I use Drone + Gitea for code versioning and automation - I talk about it here

Gitea recently added package management which means that compiled packages and docker
containers can be stored alongside code - super useful. By default package hosting is turned off but
you can turn it on per-project in the advanced settings section in your project settings:

Python and Gitea

Use Drone CI for Gitea

Gitea Package Management

https://wiki.jamesravey.me/books/software-misc/page/gitea-and-droneci

https://wiki.jamesravey.me/uploads/images/gallery/2022-10/5pTimage.png

Simon Willison has some really interesting/useful advice for building command lines (mirror).

I took a copy of his cookie cutter template and put it here

CLI Development

https://simonwillison.net/2023/Sep/30/cli-tools-python/
https://archive.jamesravey.me/archive/1696190222.759702/index.html
https://git.jamesravey.me/ravenscroftj/click-app

FastAPI

FastAPI

Inspired by https://stackoverflow.com/questions/63510041/adding-python-logging-to-fastapi-
endpoints-hosted-on-docker-doesnt-display-api

Set up your logger configuration

FastAPI Logging

from pydantic import BaseModel

class LogConfig(BaseModel):

 """Logging configuration to be set for the server"""

 LOGGER_NAME: str = "mycoolapp"

 LOG_FORMAT: str = "%(levelprefix)s | %(asctime)s | %(message)s"

 LOG_LEVEL: str = "DEBUG"

 # Logging config

 version = 1

 disable_existing_loggers = False

 formatters = {

 "default": {

 "()": "uvicorn.logging.DefaultFormatter",

 "fmt": LOG_FORMAT,

 "datefmt": "%Y-%m-%d %H:%M:%S",

 },

 }

 handlers = {

 "default": {

 "formatter": "default",

 "class": "logging.StreamHandler",

 "stream": "ext://sys.stderr",

 },

 }

 loggers = {

 LOGGER_NAME: {"handlers": ["default"], "level": LOG_LEVEL},

https://stackoverflow.com/questions/63510041/adding-python-logging-to-fastapi-endpoints-hosted-on-docker-doesnt-display-api
https://stackoverflow.com/questions/63510041/adding-python-logging-to-fastapi-endpoints-hosted-on-docker-doesnt-display-api

Import the configuration and use it:

 }

from logging.config import dictConfig

import logging

from .config import LogConfig

dictConfig(LogConfig().dict())

logger = logging.getLogger("mycoolapp")

logger.info("Dummy Info")

logger.error("Dummy Error")

logger.debug("Dummy Debug")

logger.warning("Dummy Warning")

Install dependencies for SQLalchemy and MySQL:

Set up a .env file containing your DB creds:

Once you have set up your .env file you can load it into your python script

SQLAlchemy and MySQL

pip install sqlalchemy pymysql python-dotenv

SQL_HOST=localhost

SQL_PASSWORD=blahblah

SQL_USER=readonly

SQL_DB=my_database_name

import os

import sqlalchemy

import dotenv

dotenv.load_dotenv()

engine =

sqlalchemy.create_engine(f"mysql+pymysql://{env['SQL_USER']}:{env['SQL_PASSWORD']}@{env['SQL_H

OST']}/{env['SQL_DB']}")

query = """SELECT * FROM table_name WHERE col1="blah" LIMIT 1000"""

with engine.connect() as conn:

 df = pd.read_sql(query, conn)

df.head()

Working with the Django web framework and associated libraries

Django

https://www.djangoproject.com/

Django

I wrote a blog about packaging django apps up for shipping in docker.

Use the manage.py check command to ensure that your site is ready for prod usage.

Deploy A Site Live - Matt Layman (mirror)

Deploying Django Apps
Packaging a Django App in Docker

Check Utility

Resources

https://wiki.jamesravey.me/Serving%20Django%20inside%20Docker%20the%20Right%20Way
https://www.mattlayman.com/understand-django/deploy-site-live/
https://archive.jamesravey.me/archive/1705845709.513886/index.html

Django

When working with Django and PostgreSQL it is typically best to use the psycopg[binary] package:

If you need to migrate from an integer to a duration column you need to manually tell Postgres
what unit of time to use - it won't assume that you mean seconds or minutes etc. Here is an
example excerpt from a Gastronaut migration.

Django and PostgreSQL

pip install psycopg[binary]

Migrating From Integer to Duration

class Migration(migrations.Migration):

 dependencies = [

 migrations.swappable_dependency(settings.AUTH_USER_MODEL),

 ('recipe_app', '0002_nurishifyprofile'),

]

 operations = [

 migrations.AlterField(

 model_name='nurishifyprofile',

 name='user',

 field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE,

related_name='profile', to=settings.AUTH_USER_MODEL),

),

 # workaround for migrating postgres

 migrations.RunSQL(

 "ALTER TABLE recipe_app_recipe ALTER COLUMN cooking_time TYPE interval USING

cooking_time * interval '1 second'",

 reverse_sql=migrations.RunSQL.noop

),

 migrations.AlterField(

 model_name='recipe',

 name='cooking_time',

 field=models.DurationField(),

I wrote a blog post about testing Postgres-based django apps in Gitea. The TL;DR is effectively to
install and configure the postgresql server in the runner image like so:

),

Testing with Django and Postgres in Gitea Actions

name: Run Tests

run-name: ${{ gitea.actor }} is testing out Gitea Actions ��

on: [push]

jobs:

 run_tests:

 runs-on: ubuntu-latest

 container: catthehacker/ubuntu:act-latest

 steps:

 - name: Checkout Codebase

 uses: actions/checkout@v3

 - name: Configure and install postgres

 run: |

 apt update

 apt install -y postgresql

 service postgresql start

 sudo -u postgres -s psql -U postgres -d postgres -c "alter user postgres with

password 'test123';"

 - uses: pdm-project/setup-pdm@v3

 with:

 python-version: 3.10

 token: ${{ secrets.GH_TOKEN }}

 - name: Install dependencies

 run: cd ${{ gitea.workspace }} && pdm install

 - name: Run Django tests

 env:

 DB_HOST: 127.0.0.1

 DB_NAME: gastronaut

 DB_USER: postgres

 DB_PASSWORD: test123

 run: |

 cd ${{ gitea.workspace }} && pdm run manage.py test

https://brainsteam.co.uk/2024/01/20/gitea-forgejo-actions-and-postgresql-tests/

Historically Python packaging has been a bit of a mess. There were lots of different tools that did
some things well and other things very poorly and distributing applications that use Python was a
pain.

In 2021, I wrote a detailed post about Python package managers and environment managers and
the pros and cons of each. At the time, I made recommendations around Miniconda, PDM and
Poetry. For pure Python projects (that didn't require specialised C libraries or Nvidia toolkits) Poetry
remained the best tool until very recently.

Within the last 12 months the whole landscape has shifted. uv is now the reigning champion when
it comes to all things Python packaging related.

Python Packaging
Overview

UV: The Modern Solution

https://notes.jamesravey.me/Software/PDM
https://docs.astral.sh/uv/

