Python

Batch lterating in Pandas

Times and Dates in Python

Python and Gitea

e CLI Development

e FastAPI

o FastAPI Logging

SQLAIchemy and MySQL

e Django

o Deploying Django Apps

o Django and PostgreSQL

Python Packaging

Batch Iterating in Pandas

BATCH SIZE=32
for k,grp in df.groupby(np.arange(len(df))//BATCH SIZE):

grp is a tiny dataframe BATCH SIZE rows long
print(k,grp)

References

e python - How to iterate over consecutive chunks of Pandas dataframe efficiently - Stack

Overflow

https://stackoverflow.com/questions/25699439/how-to-iterate-over-consecutive-chunks-of-pandas-dataframe-efficiently
https://stackoverflow.com/questions/25699439/how-to-iterate-over-consecutive-chunks-of-pandas-dataframe-efficiently

Times and Dates in Python

The built in datetime library in Python can be a bit rubbish/difficult to use.

e Pendulum provides an API kind of similar to moment.js although the parsing of text dates
is not quite as flexible/powerful.

https://pendulum.eustace.io

Python and Gitea

Tips and tricks for Python and Gitea and CI stuff.

Use Drone CI for Gitea

| use Drone + Gitea for code versioning and automation - | talk about it here

Gitea Package Management

Gitea recently added package management which means that compiled packages and docker
containers can be stored alongside code - super useful. By default package hosting is turned off but
you can turn it on per-project in the advanced settings section in your project settings:

https://wiki.jamesravey.me/books/software-misc/page/gitea-and-droneci

Advanced Settings

wiki « Enable Repository Wiki
® Use Built-In wiki

Use External Wiki

Issues + Enable Repository Issue Tracker

® Use Built-In Issue Tracker

+ Enable Time Tracking

+ Let Only Contributors Track Time

+ Enable Dependencies For Issues and Pull Requests
Close an issue via a commit made in a non default branch
Use External Issue Tracker

External Issue Tracker URL

External Issue Tracker URL Format

External Issue Tracker Number Format Numeric Alphanumeric

Projects ' Enable Repository Projects

Packages « Enable Repository Packages Registry

Pull Requests v Enable Repository Pull Requests

Ignore Whitespace for Conflicts

«# Crshla Fammie Aaraina

Regular Expression

https://wiki.jamesravey.me/uploads/images/gallery/2022-10/5pTimage.png

CLI Development

Simon Willison has some really interesting/useful advice for building command lines (mirror).

| took a copy of his cookie cutter template and put it here

https://simonwillison.net/2023/Sep/30/cli-tools-python/
https://archive.jamesravey.me/archive/1696190222.759702/index.html
https://git.jamesravey.me/ravenscroftj/click-app

FastAPI

FastAPI

FastAPI Logging

Inspired by https://stackoverflow.com/questions/63510041/adding-python-logging-to-fastapi-

endpoints-hosted-on-docker-doesnt-display-api

Set up your logger configuration

from pydantic import BaseModel

class LogConfig(BaseModel):

"""l ogging configuration to be set for the server"""

LOGGER NAME: str = "mycoolapp"
LOG_FORMAT: str = "%(levelprefix)s | %(asctime)s | %(message)s"

LOG LEVEL: str = "DEBUG"

Logging config
version = 1
disable existing loggers = False
formatters = {
"default": {
"()": "uvicorn.logging.DefaultFormatter",
"fmt": LOG_FORMAT,
"datefmt": "SY-%m-%d S%H:%M:%S",

I
}
handlers = {
"default": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
I
}
loggers = {

LOGGER NAME: {"handlers": ["default"], "level": LOG LEVEL},

https://stackoverflow.com/questions/63510041/adding-python-logging-to-fastapi-endpoints-hosted-on-docker-doesnt-display-api
https://stackoverflow.com/questions/63510041/adding-python-logging-to-fastapi-endpoints-hosted-on-docker-doesnt-display-api

Import the configuration and use it:

from logging.config import dictConfig
import logging

from .config import LogConfig

dictConfig(LogConfig().dict())
logger = logging.getLogger("mycoolapp")

logger.info("Dummy Info")
logger.error("Dummy Error")
logger.debug("Dummy Debug")

logger.warning("Dummy Warning")

SQLAIchemy and MySQL

Install dependencies for SQLalchemy and MySQL:

pip install sqlalchemy pymysql python-dotenv

Set up a .env file containing your DB creds:
SQL_HOST=localhost
SQL_PASSWORD=blahblah

SQL_USER=readonly
SQL_DB=my database name

Once you have set up your .env file you can load it into your python script
import os
import sqlalchemy
import dotenv
dotenv.load dotenv()
engine =
sqlalchemy.create engine(f"mysql+pymysql://{env['SQL USER']}:{env['SQL_ PASSWORD']}@{env['SQL H
0ST'1}/{env['SQL DB'1}")
query = """SELECT * FROM table name WHERE coll="blah" LIMIT 1000"""
with engine.connect() as conn:

df = pd.read sql(query, conn)

df.head()

Django

Working with the Django web framework and associated libraries

https://www.djangoproject.com/

Django

Deploying Django Apps

Packaging a Django App in Docker

| wrote a blog about packaging django apps up for shipping in docker.

Check Utility

Use the manage.py check command to ensure that your site is ready for prod usage.

Resources

Deploy A Site Live - Matt Layman (mirror)

https://wiki.jamesravey.me/Serving%20Django%20inside%20Docker%20the%20Right%20Way
https://www.mattlayman.com/understand-django/deploy-site-live/
https://archive.jamesravey.me/archive/1705845709.513886/index.html

Django and PostgreSQL

When working with Django and PostgreSQL it is typically best to use the psycopglbinary] package:
pip install psycopgl[binary]

Migrating From Integer to Duration

If you need to migrate from an integer to a duration column you need to manually tell Postgres
what unit of time to use - it won't assume that you mean seconds or minutes etc. Here is an
example excerpt from a Gastronaut migration.

class Migration(migrations.Migration):

dependencies = [
migrations.swappable dependency(settings.AUTH USER MODEL),
('recipe_app', '0002 nurishifyprofile'),

operations = [
migrations.AlterField(
model name='nurishifyprofile',
name='user’,
field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE,
related name='profile', to=settings.AUTH USER MODEL),
),
workaround for migrating postgres
migrations.RunSQL(
"ALTER TABLE recipe _app_recipe ALTER COLUMN cooking time TYPE interval USING
cooking time * interval 'l second'",
reverse_sql=migrations.RunSQL.noop
),
migrations.AlterField(
model name='recipe’,
name='cooking time',

field=models.DurationField(),

),

Testing with Django and Postgres in Gitea Actions

| wrote a blog post about testing Postgres-based django apps in Gitea. The TL;DR is effectively to
install and configure the postgresql server in the runner image like so:

name: Run Tests
run-name: ${{ gitea.actor }} is testing out Gitea Actions [
on: [push]
jobs:
run_tests:
runs-on: ubuntu-latest
container: catthehacker/ubuntu:act-latest
steps:
- name: Checkout Codebase
uses: actions/checkout@v3
- name: Configure and install postgres
run: |
apt update
apt install -y postgresql
service postgresql start
sudo -u postgres -s psql -U postgres -d postgres -c "alter user postgres with
password 'testl123';"
- uses: pdm-project/setup-pdm@v3
with:
python-version: 3.10
token: ${{ secrets.GH TOKEN }}
- name: Install dependencies

run: cd ${{ gitea.workspace }} && pdm install

- name: Run Django tests
env:
DB HOST: 127.0.0.1
DB NAME: gastronaut
DB _USER: postgres
DB _PASSWORD: test123
run: |

cd ${{ gitea.workspace }} && pdm run manage.py test

https://brainsteam.co.uk/2024/01/20/gitea-forgejo-actions-and-postgresql-tests/

Python Packaging

Overview

Historically Python packaging has been a bit of a mess. There were lots of different tools that did
some things well and other things very poorly and distributing applications that use Python was a
pain.

In 2021, | wrote a detailed post about Python package managers and environment managers and

the pros and cons of each. At the time, | made recommendations around Miniconda, PDM and
Poetry. For pure Python projects (that didn't require specialised C libraries or Nvidia toolkits) Poetry
remained the best tool until very recently.

UV: The Modern Solution

Within the last 12 months the whole landscape has shifted. uv is now the reigning champion when
it comes to all things Python packaging related.

https://notes.jamesravey.me/Software/PDM
https://docs.astral.sh/uv/

