
Software
Engineering Misc
Cover image by AltumCode

Security
Gitea and DroneCI
Caddy Handler
FOSS Funding
Golang Web Services and Gin
CRON No MTA installed discarding output
Low and No Code Frontends
RSync
Story Mapping
Logseq HTTP API
Data Lakehouse
Design Frameworks

https://unsplash.com/photos/XMFZqrGyV-Q?utm_source=unsplash&utm_medium=referral&utm_content=creditShareLink

Security
- The OWASP API Top 10 security measures may be a good place to start when trying to decide
what security to implement on your web project

https://owasp.org/www-project-api-security/

Gitea and DroneCI
I use Gitea to self-host my code + projects here and I use DroneCI, a lightweight CI pipeline that
integrates into gitea to do automation stuff.

Configuration of Drone + Gitea
TODO: write about setup here - docker etc

Drone CI Config
Drone works like many other CI systems - use yaml files in the repository to control builds. You can
specify the type of CI run at the top level of the yaml doc and also give it a name:

You can define multiple build steps - each one can have its own docker image - this is useful for
example if you have a React frontend and a Golang backend and you need to build both

kind: pipeline
type: docker
name: test and build

steps:
 - name: test_backend
 image: python:3.7
 commands:
 - pip install poetry
 - poetry install
 - poetry run pytest

 - name: test_frontend
 image: node
 commands:
 - npm install
 - npm test

https://github.com/go-gitea/gitea
https://git.jamesravey.me
https://www.drone.io/

Shared State Between Steps
Steps can share files via temporary volumes if needed but are generally stateless and independent.

Conditional Execution of Steps
You can opt to only run steps under certain conditions. For example you might only want to publish
code when stuff gets pushed to master. Use conditions to do this:

The drone documentation has a full set of conditions that you can use - you can also whitelist and
blacklist certain events and certain branches

Secrets
Secrets can be used to pass things like auth tokens into CI pipelines. This is useful if you want to do
things like publish packages or upload files. You essentially declare an environment variable and
then define which "secret" it came from in your CI yaml file:

 - name: publish
 when:
 branch:
 - master
 event:
 exclude:
 - pull_request
 image: python3.7
 commands:
 - twine upload...

 - name: publish
 when:
 branch:
 - master
 event:
 exclude:
 - pull_request
 image: python3.7
 environment:

https://docs.drone.io/pipeline/docker/syntax/volumes/temporary/
https://docs.drone.io/pipeline/conditions/
https://docs.drone.io/secret/repository/

Then in the drone frontend you can add the value and it will be stored securely and passed to the
CI at run time:

Backup Mechanism

 GITEA_PACKAGE_REPO:
 from_secret: gitea_package_repo
 GITEA_OWNER:
 from_secret: gitea_owner
 GITEA_TOKEN:
 from_secret: gitea_token

https://wiki.jamesravey.me/uploads/images/gallery/2022-10/X36image.png

Caddy Handler
You can set up caddy to do different things depending on the prefix using handle directive

testsite.com {
 handle_path /media* {
 root * /path/to/media
 file_server
 }

 handle {
 root * /path/to/normal/content
 file_server
 }
}

https://caddy.community/t/how-to-serve-file-server-from-different-path/10034

FOSS Funding
Underfunding of FOSS projects can be disasterous as this list shows.

https://github.com/PayDevs/awful-oss-incidents

Golang Web Services and
Gin
I've been using GoLang to build IndieScrobble

Live Reload
I use this package to live-reload my application as I make changes to it.

https://github.com/ravenscroftj/indiescrobble
https://github.com/codegangsta/gin

CRON No MTA installed
discarding output
Answer from here

The [best option](https://askubuntu.com/a/804289) seems to be redirect all output to a log file:
> (use `sudo` if the issue is with root’s crontab) and add `>> /some/log/file 2>&1` after every
command, like this:

Linux uses mail for sending notifications to the user. Most Linux distributions
have a mail service including an MTA (Mail Transfer Agent) installed. Ubuntu
doesn't though.

You can install a mail service, postfix for example, to solve this problem.

Or you can ignore it. I don't think the inability of cron to send messages has
anything to do with the CPU spike (that's linked to the underlying job that cron is
running). It might be safest to install an MTA and then read through the
messages (mutt is a good system mail reader).

“

sudo apt-get install postfix

0 3 * * * cmd >> /some/log/file 2>&1

https://askubuntu.com/questions/222512/cron-info-no-mta-installed-discarding-output-error-in-the-syslog

Low and No Code Frontends
Quite often it is useful to have ugly-but-functional frontends for accessing things like databases and
carrying out user management. Recently commercial tools like Retool have made it really easy to
build this kind of thing by providing drag-and-drop UI builders that are reminiscent of the Visual
Studio tooling that we had in the late 90s and early 00s.

Appsmith
Appsmith is a FOSS low-code app builder. IT can connect with a variety of data sources and apps
can be exported to git

RSync
RSync is a FOSS file copying/syncing tool that has a number of uses and can be used to sync via
SSH.

Preserving User Permission in Rync
https://brainsteam.co.uk/2024/01/03/migrating-users-across-servers-with-rsync/

Syncing with Non-Standard SSH Ports
It's generally good practice to run SSH services on non-standard ports so that they can't be (as)
easily port-scanned and attacked. If you need to use RSync with a non standard port you can tell it
any extra ssh arguments it needs to know about via the -e argument as explained in this article (
mirror):

rsync -arvz \
 -e 'ssh -p <port-number>' \
 --progress --delete \
 user@remote-server:/path/to/remote/folder /path/to/local/folder

https://wiki.jamesravey.me/books/seed-propagator/chapter/free-open-source-software-and-open-culture
https://brainsteam.co.uk/2024/01/03/migrating-users-across-servers-with-rsync/
https://www.tecmint.com/sync-files-using-rsync-with-non-standard-ssh-port/
https://archive.jamesravey.me/archive/1690032132.955091/index.html

Story Mapping

Resources
https://www.easyagile.com/blog/the-ultimate-guide-to-user-story-maps/#what-is-user-story-
mapping

https://www.easyagile.com/blog/the-ultimate-guide-to-user-story-maps/#what-is-user-story-mapping
https://www.easyagile.com/blog/the-ultimate-guide-to-user-story-maps/#what-is-user-story-mapping

Logseq HTTP API
LogSeq provides a HTTP API for developing plugins. The documentation is not particularly intuitive
to get used to.

Enabling the API
1. Turn on Dev Mode + API

You need to turn on developer mode within Logseq via the settings menu:

Go into the advance settings and enable developer mode

https://wiki.jamesravey.me/uploads/images/gallery/2023-10/image.png

Then when the app restarts you should be able to enable the API

2. Add a Token

by default no token is provided so you won't be able to call the api. Open the manage tokens
dialog and create a new token:

https://wiki.jamesravey.me/uploads/images/gallery/2023-10/MgEimage.png
https://wiki.jamesravey.me/uploads/images/gallery/2023-10/Emximage.png

You will now be able to make HTTP requests to the given URL and PORT using Authorization:
Bearer lulz or whatever value you chose.

Using the API
If you open your browser and head to http://127.0.0.1:12315/ you will be advised that you can
POST to http://127.0.0.1:12315/api with a JSON payload and you can specify which method to call
and what arguments to pass. You can use the Logseq Plugin Docs to find a list of methods that can
be used.

For example if I have a page called Logseq I could use the following payload along with an
Authorization: Bearer <token> header to get the page's markdown block content:

{
 "method":"logseq.Editor.getPageBlocksTree",
 "args":[
 "Logseq"
]
}

https://wiki.jamesravey.me/uploads/images/gallery/2023-10/AXOimage.png
https://wiki.jamesravey.me/uploads/images/gallery/2023-10/A1Uimage.png
http://127.0.0.1:12315/
http://127.0.0.1:12315/api
https://plugins-doc.logseq.com/

You can pretty much use any of the methods listed on the plugin doc page with this method - you'll
need to check the required arguments in the documentation and make sure that you pass the
correct args.

Data Lakehouse
A data lake house combines together the best bits of data warehouses and data lakes.

Data Lakehouses could be seen as the natural convergence of the two architectures (see
https://cloud.google.com/blog/products/data-analytics/data-lake-and-data-warehouse-convergence)

Data Lake
Data Lake is the name we give to a collection of tools that are often used together to process large
amounts of data. Typically it includes a storage system like S3 or HDFS and a processing system
like Apache Spark or Hadoop.

Store lots of data - often in its raw "unprocessed" form in pseudo-real-time
Process a subset of data in real-time or in batch modes
Provide language-agnostic language runtimes for data analysis.

Data Warehouse
A data warehouse is usually where data that has been processed and is now structured is stored. It
is often used directly by business analysts in downstream applications. Data warehouses don't
scale easily and typically have a lot more validation and processing associated with them.

Data Lakehouse
A data lakehouse attempts to combine elements of both Data Lake and Data Warehouse - again it
is typically the name given to a group of systems architected together to provide this set of
functionality. It normally supports Extract, Load and Transform paradigm.

References
https://cloud.google.com/learn/what-is-a-data-lake
https://www.snowflake.com/guides/what-data-lakehouse

https://cloud.google.com/blog/products/data-analytics/data-lake-and-data-warehouse-convergence
https://cloud.google.com/learn/what-is-a-data-lake
https://www.snowflake.com/guides/what-data-lakehouse

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-data-
lake

https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-data-lake
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-a-data-lake

Design Frameworks
Design frameworks provide out of the box styling and components for use in websites. Many
frameworks sit on top of Javascript and Typescript libraries and some lightweight frameworks
simply provide CSS styles on top of static HTML.

React Frameworks

Lightweight CSS Frameworks
SimpleCSS - written by Kev Quirk and provides a very simple and lightweight framework
on top of standard HTML5 elements and components.
Foundation - another lightweight CSS framework that works without loads of javascript
libraries.

https://simplecss.org/
https://get.foundation/sites/docs/kitchen-sink.html#0

