
Local LLMs
LangChain and Zephyr
Embeddings and Llama.cpp
PyLLMCore

Working with LLMs

I'm a big fan of Simon Willison's llm package. It works nicely with llama-cpp.

I didn't get on well with pipx in this use case so I used conda to create a virtual environments for
LLM and then installed it in there.

Since I have an NVIDIA card I pass in CMAKE flags to have it build support for cuda:

LangChain is a FOSS library for chaining together prompt-able language models. I've been using it
for building all sorts of cool stuff.

Local LLMs
LLM Utility

Installing llm

conda create -y -n llm python=3.10

conda activate llm

pip install llm llm-llama-cpp

CMAKE_ARGS="-DLLAMA_CUBLAS=ON -DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc" FORCE_CMAKE=1

llm install llama-cpp-python

alternatively if no NVIDIA support is available, this works well

CMAKE_ARGS="-DLLAMA_OPENBLAS=on" FORCE_CMAKE=1 llm install llama-cpp-python

LangChain

https://llm.datasette.io/en/stable/index.html

Zephyr is pretty powerful and it will quite happily use tools if you prompt it correctly.

Zephyr uses the following prompt template (as explained here):

The system prompt is defined, followed by a user query/request and then we use <|assistant|> to
prompt the model to start generating its own output.

Here is a tool prompt that I've managed to get working with Zephyr based on the original guide
here and corresponding langchainhub prompt here. The interesting and key thing seems to be
reminding the model to consider the inputs for the next action on line 23. Without that it would
always try to run an action without any inputs.

LangChain and Zephyr

<|system|>

</s>

<|user|>

{prompt}</s>

<|assistant|>

Tool Prompt

<|system|>

Respond to the human as helpfully and accurately as possible. You have access to the following

tools:

{tools}

Use a json blob to specify a tool by providing an action key (tool name) and an action_input

key (tool input).

Valid "action" values: "Final Answer" or {tool_names}

Provide only ONE action per $JSON_BLOB, as shown:

```

{{

https://huggingface.co/TheBloke/zephyr-7B-alpha-GGUF#prompt-template-zephyr
https://python.langchain.com/docs/modules/agents/agent_types/structured_chat.html
https://smith.langchain.com/hub/hwchase17/react-multi-input-json/playground


  "action": $TOOL_NAME,

  "action_input": $INPUT

}}

```

Follow this format:

Question: input question to answer

Thought: consider previous and subsequent steps. Consider inputs needed for next action.

Action:

```

$JSON_BLOB

```

Observation: action result

... (repeat Thought/Action/Observation N times)

Thought: I know what to respond

Action:

```

{{

  "action": "Final Answer",

  "action_input": "Final response to human"

}}

```

Begin! Reminder to ALWAYS respond with a valid json blob of a single action.

Use tools if necessary.

Respond directly if appropriate.

always pass appropriate values for `action_input` based on the tools defined above.

Format is Action:```$JSON_BLOB```then Observation

Previous conversation history:

{chat_history}

</s>

Question: {input}

{agent_scratchpad}

SQLite VSS is a SQLite extension that adds vector search on top of SQLite. It's based on FAISS1

There are some examples of how to use Pure SQLite VSS on the blog post here

You can use SQLite VSS with Langchain which makes it easier to use. The documentation is here
for sqlite-vss and here for using llama for embedding.

You need to install sqlite-vss python package to use it via pip install sqlite-vss

Load the zephyr model with long contet and set gpu layers up.

NB: I found that Zephyr isn't actually very good for generating embeddings - I suppose this is likely
because it is fine-tuned for chatting rather than for embedding.

It actually turns out that the default MiniLM that comes with sentence-transformers does a pretty
reasonable job:

Embeddings and Llama.cpp

SQLite VSS - Lightweight Vector DB

LangChain

Zephyr embeddings

llama = LlamaCppEmbeddings(model_path="/path/to/models/zephyr-7b-alpha.Q5_K_M.gguf",

 n_batch=512,

 verbose=True, # Verbose is required to pass to the callback manager

 n_ctx=16000,

 n_gpu_layers=32)

embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")

https://github.com/asg017/sqlite-vss
https://observablehq.com/@asg017/introducing-sqlite-vss
https://observablehq.com/@asg017/introducing-sqlite-vss
https://python.langchain.com/docs/integrations/vectorstores/sqlitevss
https://python.langchain.com/docs/integrations/text_embedding/llamacpp
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

PyLLMCore is a python library for working with a variety of LLM models and it supports both OpenAI
and Local models.

Install the llama-cpp-python library first so that you can ensure that the nvidia dependencies are all
pre-configured.

The library seems quite fussy about model location. They must be in the ~/.cache/py-llm-
core/models/ folder inside your user profile. Since I am already using SimonW's LLM (as described
here) I symlink the zephyr model from there:

I realised I had done this wrong because I passed in a full filename to a model elsewhere and got
an error like this:

PyLLMCore

Setup on Linux

CMAKE_ARGS="-DLLAMA_CUBLAS=ON -DCMAKE_CUDA_COMPILER=/usr/local/cuda/bin/nvcc" pip install

llama-cpp-python

pip install py-llm-core

Put models in the correct location

ln -s ~/.config/io.datasette.llm/llama-cpp/models/zephyr-7b-alpha.Q5_K_M.gguf\

 ~/.cache/py-llm-core/models/zephyr-7b-alpha.Q5_K_M.gguf

Traceback (most recent call last):

 File "/home/james/workspace/raf/llmcore.py", line 24, in <module>

 book = parser.parse(text)

 File "/home/james/miniconda3/envs/raf/lib/python3.10/site-packages/llm_core/parsers.py",

line 20, in parse

 completion = self.model_wrapper.ask(

 File "/home/james/miniconda3/envs/raf/lib/python3.10/site-

packages/llm_core/llm/llama_cpp_compatible.py", line 65, in ask

 self.sanitize_prompt(prompt=prompt, history=history, schema=schema)

 File "/home/james/miniconda3/envs/raf/lib/python3.10/site-packages/llm_core/llm/base.py",

line 29, in sanitize_prompt

 required_ctx_size = len(codecs.encode(complete_prompt, self.name))

https://github.com/advanced-stack/py-llm-core/tree/main
https://wiki.jamesravey.me/books/working-with-llms/page/local-llms

LookupError: unknown encoding: /home/james/.config/io.datasette.llm/llama-cpp/models/zephyr-

7b-alpha.Q5_K_M.gguf

